
International Journal of Computer Trends and Technology Volume 68 Issue 8, 14-20, August 2020

ISSN: 2231-2803 / https://doi.org/10.14445/22312803/IJCTT-V68I8P102 © 2020 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Caching in Web Applications

Shobhit Chauhan

Northwestern Mutual, United States of America

Received Date: 16 June 2020

Revised Date: 28 July 2020

Accepted Date: 31 July 2020

Abstract - Last two decades have seen tremendous growth

in Web-based applications. This growth, combined with

advancement in web technologies, has fundamentally

transformed user's expectations of services and products

provided by commercial entities. Today's customer is

flooded with choices quite literally at their fingertips. It's

no surprise then that user experience in web applications

is a key parameter that drives the technology initiatives in

any company. One of the key components of user

experience is the performance of the system. As page load

time goes from one second to 10 seconds, the probability

of a mobile site visitor bouncing increases by 123%.[1].

Businesses have only a few seconds to engage the

customer online, or they run the risk of losing the

business. Performance Engineering of any web

application is therefore critical to the success of any

business in today's digitized world. Within the landscape

of performance engineering, caching holds a prominent,

permanent and respectable position. Any web application

aimed at improving the user experience implements

caching in some shape or form. Caching improves the

responsiveness of any website and thereby improves the

user experience. This paper looks at the basics of caching

and how caching can be implemented in today's

technological landscape.

Keywords - Caching, Performance Engineering, Website

Optimization, User Experience

INTRODUCTION

Caching is the mechanism by which information is

temporarily saved for future use. The information can be in

myriad forms – images, text, audio files, video files, data

and instructions in L1/L2 cache etc.

Cache work on the principle of "locality of reference",

particularly temporal locality. Temporal locality states that

if the particular element has been asked for, then the same

element will be asked for in the near future. When the

system request information for the first time, the call is

made to the origin server, which holds the master copy of

the asset. This information is then sent back to the user. At

the same time, this information is updated in an additional

storage location closer to the user. This location is referred

to as a cache. When systems request for the same

information or resource again, a copy of the requested

resource is served from the cache instead of making a call

to the originating source. This has several advantages:

faster availability of the resource, improvement in the

usage of network bandwidth, decrease in the load on the

origin server, improved uptime of the server, among others.

At the same time, caching strategies need to be properly

designed and configured. Resources should be cached only

till the time they are valid. Stale information can be as bad

as no information. Stale information can lead to a bad

customer experience or, worse, crash the applications

altogether. Technological processes are expected to be

very agile. Companies perform multiple production

deployments within a day, which can lead to changes in

the content of a page multiple times within a day. In the

absence of a sound caching strategy, these changes can

break the page and adversely affect customer experience.

I. TERMINOLOGIES

Following terminologies will come in handy when

understanding caching and its role in web applications

A. Client-Server

The Client-Server model is an architecture in which a

central server tier is responsible for serving requests for

resources from many clients. In the age of containerization

and cloud computing, there are no central servers as such.

An application spread across multiple instances in different

parts of the world is considered a single server application

tier as they behave as a single entity and perform the same

functions.

B. Origin Server

The origin server is the location of the master copy of

the content. The copy of resources on this server serves as

the source of truth for all the tiers which cache the content.

An origin server can be a single file, a folder containing

multiple files or can be a set of servers together acting as a

unified cache.

C. Private Cache

Private Cache is the Cache dedicated to a single entity.

Entities can vary depending on the tier. For example: in the

case of an end-user, a browser cache is considered as a

private cache since it serves a single entity – browser

instance; in the case of an application instance, an in-

memory store for data or cache providers caching return

value of methods can serve as a private cache for that

instance.

D. Shared Cache

Shared Cache is the Cache that stores resources that

can be used by multiple entities. For example, Content

Delivery Networks or ISP created caches are shared across

multiple users in the region covered by that CDN or ISP.

Shobhit Chauhan / IJCTT, 68(8), 14-20, 2020

15

E. Cache Hit Ratio

The cache hit ratio is the key metric to measure the

effectiveness of Cache. It is defined as the ratio of the

number of requests served from Cache to the total number

of requests made to the Cache. A high cache hit ratio

means that a large number of requests are being served

from Cache, which is a desirable outcome.

F. Cache replacement

All caches are essentially saved on a storage system

and have finite capacity. Cache replacement is a feature

through which resources in the Cache are replaced to make

way for newer data.

Key criteria for consideration for cache eviction are:

 frequency – relies on how frequently is an item

requested.

 Recency – relies on how recently was the item

requested

 Frecency – this is a combination of frequency and

recency.

The most popular algorithm for cache replacement is

LRU (Least Recently Used). Adaptive Replacement Cache

(ARC) is considered a better alternative to LRU and is

gaining some traction in developer communities these days.

It is considered to have better performance than LRU [2].

This is accomplished by keeping track of both frequently

used and recently used pages plus a cache directory.

G. Hot, Warm and Cold Cache

Caches start in a cold state, which means that they are

empty with no objects stored in them, resulting in cache

misses. As Cache start receiving requests, it starts updating

itself with cacheable objects. This state of Cache is termed

a warm state. A cache is in a hot state when it has all

cacheable objects stored and up-to-date.

H. Freshness

Whether an object can be served in response to a

query is determined by its freshness. An object is returned

to the client only when the object is within a freshness time

frame - measured by time-to-live (TTL) value. Time-to-

live defines the maximum time till which an object can be

served to the client.

I. Cache Invalidation

Cache invalidation is the process of invalidating the

contents in the Cache before the expiration of the content

as determined by the caching policy. When the original

content on the server is changed, all the copies of the

content saved on different tiers need to be updated.

Different tiers employ different mechanisms to update

their caches.

On the Browser side. Asset names are appended with

uuids. Whenever an asset needs to be invalidated in Cache,

a new uuid is appended to the asset's name. The client

application now calls the assets with updated uuid to get

the latest copy.

Application-level caches which reside within the

application instance is invalidated when the application

instance restarts. In the case of an external cache, specific

methods need to be written and invoked to clear the Cache.

Cache providers provide clear() methods which can clear

all or part of the Cache.

Oftentimes, application owners do not have control

over proxy caches and DB plan caches. These are,

therefore, difficult to be invalidated. Different strategies

are used to work around these caches. For example, to

bypass the plan query cache in the database, special inbuilt

functions are used to force specific plans on a SQL query.

Proxy caches are bypassed through the usage of the cache-

control header as private. Private header ensures that assets

can be cached only on the browser.

J. Cache Validation
Cache validation is the process of validating the

resource in the Cache against the resource at the origin

server. It ensures that the cached version is the latest

version of the resource, which can be delivered to the end

customer. Making a call to the origin server to get the

items is an expensive operation. It costs network

bandwidth, increases the load on the origin server and adds

to latency in obtaining the assets. Latency will further

increase as the size of assets increases. By performing

cache validation of the resource, these costs can be

reduced, and performance can be significantly improved.

As cache validation is performed, the asset's expiration

time gets updated as well. So, once cache validation is

performed, the asset behaves just like original cached

content, which can be directly delivered to the customer

without any validation from the origin server.

Example: Etags(Entity Tags) are often used by web

applications as means to effective caching strategy and

cache validation. When a cacheable asset is first requested

by the client, a call is made to the origin server, an asset

with Etag and expires header is delivered to the client and

Cache is updated with the content.

a) If the client requests for this asset before the

expiration of cached content, the asset is directly

delivered from the Cache.

b) If the client requests for the asset after the expiration

date, a call is made to the origin server with the

assigned ETag to check if the asset has been modified.

Assets are considered the same if the etag of the asset

at the origin and etag of the asset in the cache match.

In this case, http status code 304 (not modified) is

returned by the server. If Etags do not match, then a

new asset with the latest header information is sent to

the client and Cache is updated with a new asset. This

saves in latency and bandwidth since a lighter version

of the call is made to the origin, and contents are

downloaded only in case of a change.

Shobhit Chauhan / IJCTT, 68(8), 14-20, 2020

16

K. Distributed Cache

Distributed Cache, as the name suggests, is the Cache

that is distributed across multiple servers. This allows the

Cache to grow in size horizontally. As more and more

companies move towards the containerized platform and

towards cloud computing, distributed Cache forms a key

component of their architecture. One of the key

considerations in containerization and cloud-based

architecture is the transient nature of application instances.

Containers can fail any time; new instances can get created

anytime either to replace the failed instance or as part of

auto-scaling. In either of the cases, Cache within the

instance will either be destroyed with the instance or will

be in a cold state and will require priming. This will result

in Cache becoming ineffective. A persistent location is

therefore required for the cache component of any web

application. Distributed Cache fulfils this requirement.

Another use case created by containerization and cloud

computing is the preference for stateless instances.

Applications need to find a way to maintain a state of

various sessions. Distributed Cache helps with maintaining

web session data. This allows for application containers to

be stateless while the overall application can still create

and maintain states for different sessions.

II. CACHING TIERS IN WEB APPLICATIONS

Any content in a web application passes through

multiple tiers before reaching the end-user. Mechanisms

exist to cache resources at each of these tiers. Most

efficient caching strategies utilize most if not all the tiers

to improve the performance of the application and provide

a better user experience.

A. Client or Browser cache

The browser maintains a cache that stores cacheable

assets on the hard drive of the user's system. This has

many benefits. It helps with back/forward navigation,

viewing the page at a later date without making the calls

for the assets to the server again. It can help with offline

browsing of the content as well. The application lets the

browser know which assets can be cached and how to

maintain them through various headers (Cache-control,

expires, eTags etc.). The best candidates of caching are

static assets, e.g. CSS files, javascript files, images, videos,

fonts, SVG files, libraries (e.g. jquery) files, bootstrap files

etc. In addition to static assets, dynamic assets can be

cached as well. This requires careful consideration of the

data being cached. Only data that is not expected to change

for some significant amount of time should be cached. For

example description of a product and its price is not

expected to change within a day. Such data can be cached

for a period of 24 hours. With the usage of Etags and

UUIDs, cached content can be validated, and the Number

of calls to origin for such dynamic content can be reduced

further.

Browser caches are very powerful and can help

improve the performance considerably since it is closest to

the end-user and has the least latency. Through the use of

various http headers and careful study of application

behaviour, a robust caching strategy can be developed,

which can lead to a great customer experience. Browser is

one of the only caches on which end customer has some

form of control. A user can delete the entire Cache or

delete parts of Cache whenever the user wants.

B. Proxy caches

As the asset travels through the network, it passes

through various proxy servers. These servers have the

capabilities to cache the content as it passes through the

servers. This content can then be served to a larger user

group without making the call to origin servers. ISPs

(Internet Service Providers) and large enterprises create

and maintain these caching servers. A proxy behaves like

both a client and a server. It acts like a server to clients and

like a client to servers. A proxy receives and processes

requests from clients, and then it forwards those requests

to origin servers.[3]. These caches are out of the control of

application owners and end-users. In addition to this, there

is limited support available for cache control through http

headers. Since these are out of the control of application

owners, but they do exist, the impact of such caches need

to be considered when developing a caching strategy.

Consider an asset that gets modified at the origin and

whose browser cache is invalidated, but proxy cache has

not yet been invalidated. In this case, when a request is

made for the asset from the browser, stale content can be

served by the proxy server. The application should have a

way of bypassing the proxy server in such cases.

Oftentimes, creating an asset with a different name (by

using UUID) is used to bypass the proxy cache.

C. Content Delivery Networks

Content Delivery Network is a network that consists

of geographically distributed servers aimed at delivering

the content to the user from the location closest to the user

irrespective of the location of the origin server. Before

IaaS (Infrastructure as a Service) became the norm,

applications were hosted by central servers in data centres.

The user base of the applications could be geographically

distributed. So, a client running in London (Europe) could

be asking for an asset that was hosted in Los Angeles

(North America). This led to considerable latency issues.

CDNs proved to be of great solution to this problem.

CDNs act as trusted overlay networks that offer high-

performance delivery of common Web objects, static data,

and rich multimedia content by distributing content load

among servers that are close to the clients. CDN benefits

include reduced origin server load, reduced latency for

end-users, and increased throughput [4].

Different CDN providers implement caching

functionalities in different ways, but the most common of

these is the usage of Edge Serving. Edge serving is where

a CDN will provide a network of geographically

distributed servers that, in theory, will reduce time to load

by moving the serving of the content closer to the end-

user. This is called edge serving because the serving of the

content has been pushed to the edge of the networks [5].

With the rise of IaaS, hosting servers in single data

centres have been replaced by instances serving content

from different geographical locations. However, the

Shobhit Chauhan / IJCTT, 68(8), 14-20, 2020

17

majority of application hosting is still region-specific. So,

CDN is still helpful. In fact, all major cloud providers

provide CDN as an offering in their Product suite (AWS

CloudFront, GCP Cloud CDN, Azure CDN).

D. Distributed In-Memory Caching systems
Distributed in-memory cache systems form another

cache layer in front of the application layer. In typical

cloud architecture, this tier can be placed between the API

gateway and application layer. This tier can be used for

caching data on behalf of the applications layer, e.g. results

of a method call depending on query params. This Cache

can be used by the application tier as additional cache

storage storing results of method calls or the results of

most frequently executed function calls. In addition to this,

it is used to cache small-sized database tables, which serve

as reference tables in applications, thus helping

applications to avoid a call to the database reducing

latency of the call, load on the database and improving

throughput. This caching layer is also used for storing web

session information which is shared across various

application instances.

E. Application caching

All major application frameworks provide support for

caching. For example, Nodejs provides node-cache and

Spring framework provides an abstraction for caching that

supports different cache providers. Each time a given

method is invoked, the cache abstraction checks whether

the method has been invoked with the same arguments. If

the method has been executed earlier, the cached results

are returned. If not, then the method is executed, results

returned to the caller and cached. When the method is

invoked again with the same values, results can be

retrieved from the Cache instead of the application going

through expensive IO (e.g. calls to external systems and

database) or CPU (e.g. heavy computations) intensive

calls every time[6]. Data access objects can also be cached

in this way. This helps with a reduction in latency and

better utilization of resources and add to cost optimization

in cloud applications where charges are dependent on the

number of resources used.

F. Database caching

Several strategies are employed for fast retrieval of

results from databases – standard SQL optimization,

indexing etc. Database engines have an inbuilt mechanism

that use various algorithms to improve the performance of

query plans. With metadata collected through the

execution of query plans, database engines optimize the

query plans and cache these plans for future query

executions. However, response times will still be limited

by response times of disk IO and network latency. In

addition to this, oftentimes, the database is a central

resource (there are distributed databases available as well,

but those are still not widely used) which is accessed by

multiple instances of the application, and as such, it is

important that load on database servers should be reduced

as much as possible to provide high availability.

Database caching is a combination of multiple strategies

 Caching at the application tier of various data access

objects and data transfer objects.

 Caching of data in in-memory data caches

 Integrated Cache inbuilt in database engines, e.g.

MySQL has global query cache, MSSQL has Cursor

Library cache, and Amazon Aurora offers integrated

Cache managed within the database engine.

Each engine comes with its own unique features and

implementation, but the idea is to reduce the

workload on the database, improve latency and

minimize calls to the database for frequently

accessed data.

III. DEVELOPING A CACHING STRATEGY

A. Identifying assets to be cached

The caching strategy should consider the following

with respect to assets:

a) Usage of asset

Caches are finite resources and should be used

judiciously. A good candidate for a cacheable asset is one

that is read frequently and updated infrequently. Usage of

an asset determines how frequently an asset is called by

clients. Her clients refer to the entire user base of the

applications. Consider 2 pages of a website – one page gets

a large volume of traffic (e.g. Home page), and the second

page which receives significantly low traffic (e.g. Press

Release page). Any asset which is part of the first page is a

better candidate for caching than the second page because

it will be called more and will provide benefits of caching

to a larger user base.

b) Frequency of change in the content of the asset

Stale data can be almost as bad as no data if a user

takes actions based on the content of the data. It's

imperative that the latest data is available for the user. For

example: If a user plans to use a financial product based

on the interest rate provided by the institution, then the

application should ensure that only currently valid data is

provided to the end-user. If data becomes stale frequently,

then it is better to make the call to the origin than to cache

it and run the risk of serving stale data. Applications

should also consider backward compatibility when dealing

with cacheable data. A new version of the application

which cannot handle the old data format can cause a bad

user experience or, worse, crash the application when

presented with cache data. Applications should always

consider the effects of new versions with older data

formats and should have built-in resilience against such

failures.

c) Size of assets

Several choices need to be made when considering

caching and the size of the assets. When a large number of

small-sized assets are cached, it will lead to less number of

Shobhit Chauhan / IJCTT, 68(8), 14-20, 2020

18

 calls to the origin and free up the resources

(threads, connections etc.) both on the client-side as well

as on the server-side. At the same time, a small number of

large-sized assets are better candidates for caching if they

take a long time at the origin to process. For example,

consider an application aggregating and processing the

large volume of monthly data of all employees in a

particular region and which returns a large-sized response.

Here overall latency of downloading the asset will include

the time to process the request by a server application and

the time to transfer all the packets of the response. Packets

count and consequently time to transfer the contents will

increase as the size of the asset increases. If the client

serves the content from Cache instead of making a call to

the origin, it will save bandwidth, free up resources on

client and server, and result in a reduction of latency

considerably.

Study of the usage patterns and comprehensive

performance testing can provide data points which can

then help with comparison of cost-to-benefit analysis of

such conflicting cases.

d) Type of asset

Static assets are considered the best candidates for caching

provided they perform well on other indices – size, usage

and change frequency. Examples of static assets can be

CSS files, javascript files, logos, fonts, images etc. which

are used for rendering the static potion of web pages.

On the server-side, applications logic often looks up

various tables for reference data, e.g. Product Type Ids,

Product sizes. Reference data that is not expected to be

changed frequently but is used by the application for

executing methods/functions frequently are good

candidates for caching at the application tier or at in-

memory caches. If reference data spans across multiple

tables, then a method can be written to fetch the data from

various tables. Results of this method call can be cached.

Whenever the method is invoked next time, it will check

the Cache first to provide the response. This will reduce

the load on the database and reduce overall latency since

network latency (from call to the database), disk latency

(from disk IO to get the results), and query latency (time

taken to query the response) has been replaced by a single

call to an in-memory cache.

Careful analysis needs to be performed before caching

dynamic assets. The following questions should be

answered before caching dynamic contents:

 How frequently does the content of the asset

change?

 What will be the impact if the user is presented

with stale data? Will it break any calls on the

current page or subsequent pages? Are the

safeguards in place to avoid users getting served

with stale data?

 Is the data critical for the user to take the next

steps on the site?

 Can HTTP headers (Etags, cache-control: no-

cache, max-age=0) be used to validate the

contents?

B. Identifying tiers to be used

Any data passes through multiple tiers before it is

delivered to the end-user. Each of these tiers has the

capability to cache data. A sound caching strategy

considers all tiers and uses them depending on their

strengths. Two key ideas related to tiers should be kept in

mind:

 Closer the tier is to the end-user, the more

beneficial it is.

For example: if a call is triggered from a browser

and is satisfied by the browser cache, this will

provide the maximum benefit of caching.

 Farther the tier from application owner, less

control application owner has on the Cache

For example, an application owner has more

control over the application tier than on the

browser cache.

If an asset changes within the expiration period,
the application owner can clear the entire Cache

on application instances (closer to the application

owner). But on the browser (farther from the

application owner), Cache cannot be cleared (less

control). The owner will need to use the

invalidation process so that the user uses content

other than the one already cached.

C. Identifying expiration criteria, validation and

invalidation strategies

Business priorities change, technologies change,

deployment does not go as planned, all or parts of the code

may need to be rolled back, unplanned changes happen,

content becomes out-of-date/invalid before it was expected

to be. All of these are commonplace in IT systems.

Applications should always consider that such surprises

can happen and, as such, should have the agility and ability

to handle them effectively, oftentimes, on very short notice.

Every cacheable asset should have an expiration date or

expiration criteria.

The caching strategy should have a process of validating

and invalidating every cached asset on every tier. In the

absence of such safeguards with no ability to control

behaviour, applications can run unpredictably when

changes happen.

Additionally, careful attention needs to be paid when

working with caching and HTTP headers.

For example: Consider an application that catches the

username or account Id or product preferences of the user.

But the application doesn't set the cache-control to private.

This information can now be cached on the proxy server. If

now some other user uses the same application and same

proxy, this user will be provided with the personal

information (username or account Id or product

preferences) of the first user. Besides this being a huge

security concern, it is a terrible user experience for a

second user who is unable to access his own account.

This problem is further exacerbated by the fact that proxy

cache is mostly out of the control of both end-user and

application owner.

Shobhit Chauhan / IJCTT, 68(8), 14-20, 2020

19

It is imperative that every asset has expiration criteria

and mechanisms exist for validation and invalidation. The

validation approach can be synchronous or asynchronous.

Synchronous validation of an object is done at object

request time. With asynchronous validation, the client

periodically checks its cached objects, identifies those

objects that require validation, and validates them

proactively without waiting for a request [3].

D. General considerations

Caching helps once the data is available in the Cache.

But when the user calls for the asset the first time, there

will be some delay since data is not available in the Cache

yet. In addition to this, shared caches like proxy caches or

CDN can be region-specific. This means that unless a user

within a region doesn't call for an asset, it won't be

available for other users in the region. This leads to a

situation where it takes some time before shared Cache is

able to help a larger user base with cache benefits.

However, with carefully designed applications, some of

the data can be made available to the user instantaneously.

This can be done by using some or all of the following

techniques:

a) Priming the Cache
Instead of waiting for a call to trigger the process of

caching, the application can pre-emptively build up the

Cache. This priming is applicable to tiers under control of

the application owner – database caching, application

caching, distributed Cache. Application logic is created,

which calls all the methods whose response needs to be

cached. This logic is triggered during the start-up of the

application. This way, some data is available in the Cache

even before any user request has reached the application

instance. This is termed priming the Cache.

However, priming the Cache is not without a catch.

When priming the Cache, the time to start the application

and make it available for processing user requests will

increase. This will happen because start-up has a new step

of priming the Cache now, which in itself may be

composed of multiple calls to origin (database, files etc.).

If left unchecked, this time can be considerably high,

which leads to a high start-up time of application.

This can further affect the high availability and

elasticity of the system adversely. One of the ways

applications achieve high availability and elasticity is

through auto-scaling. Autoscaling is triggered when an

application needs additional instances to process the

requests. Auto-scaling, therefore, sets up the instances,

starts the application and make them available to the pool

for processing of requests. An increase in start-up time will

add to a delay in instances being available for processing

of users' requests. This is an undesirable outcome,

particularly when the system needs additional instances

quickly. Comprehensive testing of the start-up process and

the auto-scaling process is required to ascertain the correct

amount of priming, which helps meet the SLAs.

b) Server Push

Server Push is a feature available to HTTP/2

compatible clients and servers. It is one of the key features

coming out of HTTP/2 and is targeted towards better

performance. Through Server Push, the server can send the

files to the client even before the client has requested those

files. For example, consider a client requests for a Product

page from a retail website. The server sends the base

HTML back to the client. The client needs to parse through

the HTML to find what other assets it needs to request in

order to render the page, which will take some time. But

server application is aware of the essential assets required

to render the page. The server can, therefore, pre-

emptively and asynchronously send the required assets to

the client. When the client actually parses the base HTML

and calls for the asset, it is already available for the user,

and the browser can begin rendering the page faster.

Server push can be used to send assets not only of the

current page but also of subsequent pages that the user is

likely to visit. For example: If a user has clicked in for the

Login page, the user will most probably sign in and will be

taken to the account landing page. Server push can provide

assets both for the Login page and the account landing

page.

IV. CONCLUSION

Caching forms the cornerstone of every type of

architectural implementation- monolith or microservices,

on-prem or cloud, front-end heavy or backend services,

region-specific or global.

It's one of the most efficient and time-tested tools in

performance engineering.

It helps businesses to provide good user experiences

even with complex functionalities. And it helps

engineering teams to avoid premature optimization when

working with complex applications.

Web applications have undergone a huge

transformation in the last two decades. It is the primary

way in which the majority of people communicate with

their environment now - services, products, social circles,

information etc. Users have high expectations from these

applications both in terms of features as well as

performance. Software applications are becoming

increasingly more complex in order to provide the user

with richer and newer experiences. These factors together

throw in great challenges towards technology to provide

great experiences without losing out on performance.

Caching in web applications is one of the many ways in

which technology has been able to meet such challenges.

REFERENCES
[1] DanielAn, https://www.thinkwithgoogle.com/marketing-

resources/data-measurement/mobile-page-speed-new-industry-

benchmarks/, February 2018

[2] N. Megiddo and D. S. Modha, Outperforming LRU with an
adaptive replacement cache algorithm, in Computer, 37(4)

(2004)58-65. doi: 10.1109/MC.2004.1297303.

Shobhit Chauhan / IJCTT, 68(8), 14-20, 2020

20

[3] Duane Wessels, Web Caching. O'Reilly Media Inc, (2001).

[4] A. Vakali and G. Pallis, Content delivery networks: status and
trends," in IEEE Internet Computing, 7(6)(2003)68-74. doi:

10.1109/MIC.2003.1250586.

[5] Tom Barker, Intelligent Caching, O'Reilly Media Inc. 2017
[6] https://docs.spring.io/spring/docs/current/spring framework

reference/integration.html#cache

[7] Oliver Spatscheck, Michael Rabinovich, Web Caching and

Replication, Addison-Wesley Professional, 2001.
[8] Banerjee Krishnadas, Das Anupam, Dhawa Sagar Kumar, Dr Roy

Chowdhury Dilip, Dr Das Anirban Application of Nature-Inspired

Algorithms for Decision Making of Small Businessmen
International Journal of Engineering Trends and Technology 66(3)

(2018)129-132.

